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1    Introduction and problem formulation 

ppiiiailisis 
ur   and chemical compos,t10„ as well as in underground detection of mines and bun     , 

contaming «bar concrete with highly conductive components. 

27LZ
X

0^:TV" "",iC" "'"'I POlari2ati0n baSCd '"'^tion techniques may be 
.mpuw afte?   e  r    7™ "llUer'    PrO,>0rtieS by °bServing *t™n»g"etic microwav 

ences in Chapter 1 of (4]a„d [1]). Difficulties for this approach include large and/or hirfflv 

Ä-rorl^r1^ la,getS " ™" - the infeasibili* °< Ä-- » 
A second approach entails the interrogation via reflections from a target with a hiehlv con 

scarce! ^HfleT^ — "if inC'Ude "* °f * "^ "»^ -* C 

mcluding rebar concrete and »^„^,«^^1^^^^^* 

ÄÄJLTed " t,liS PaPer' e"tailS USe °f a traVCUnS -o-'- ™« as a reflect- 
ion^ f Probating microwave impulses.  It is rather well-accepted fee 

f6 1    o      P microwave interrogating signal that reflects from natural material inter 

to esfmate polarization properties in dielectric material target! .n^rt^p"^ 



one must have a viable model for acoustic pressure-dependent material polarization. In Sec- 
tion 2, we present such a polarization model founded on accepted mechanisms. Our model is 
based on the Debye model for orientational polarization. We modify this model to incorpo- 
rate pressure-dependence and allow for the electromagnetic/acoustic interaction that results 
in the reflections. Other approaches to modeling electromagnetic/acoustic interaction are 
outlined in [10]. In Section 3, we develop a theoretical framework for the inverse problem 
which underlies the interrogation technique. Finally in Section 4, we provide sample inverse 
problem calculations to support the feasibilty of the technique. 

Under certain assumptions (see also [4]), including material homogeneity in directions per- 
pendicular to the direction of electromagnetic wave propagation and the use of a polarized 
planar electromagnetic wave, we may model the interrogation technique using a one di- 
mensional form of Maxwell's equations with temporally and spatially varying coefficients. 
Provided that these assumptions hold, Maxwell's equations can be written 

d d 

8iE = -"•«» « 

kH = WtD + aE + J° P) 

where E and H are the electric and magnetic fields, D is the electric flux density, and Js 

is the source current density. The macroscopic polarization P is introduced via the electric 
flux density through the relation 

D = eQerE + P (3) 

where er represents the effects of instantaneous polarization in the dielectric. We discuss the 
form of P in great detail in Section 2. By taking the appropriate derivatives of (1) and (2) 
and employing equation (3), we obtain 

HotrE 4- ß0P + ß0aE - E" = -ß0js. (4) 

Here and throughout we use E to denote ftE and E' to denote j^E. 

We consider (4) in the domain 0 < z < 1 with air in the interval [0, zx\ and a dielectric 
material in the region (zul) (0 < zx < 1). We enforce an absorbing boundary condition 
on the left (z = 0) and a perfectly conductive boundary condition on the right (z = 1). 
We leave the initial conditions for the electric field in general form, but we assume that the 
polarization and its first time derivative are initially zero (this may be done without loss of 
generality). The geometry of the problem is shown in Figure 1. 



Absorbing 
Boundary 

Air 

Interrogating 
E&M 

Waves 

Perfectly Conductive 
Boundary 

Dielectric 
Material 

Acoustic 
Pressure 
Waves 

z=0 z=z, z=l 

Figure 1: Schematic of geometry 

2    Polarization model 

In this section, we present and motivate our model for pressure-dependent polarization. We 
begin by discussing polarization in general and then explain how it pertains to our problem. 

2.1     Mechanisms of polarization 

Electric polarization is by definition the electric dipole moment per unit volume. The for- 
mation of these electric dipoles can be caused by several mechanisms [2], [3] which we briefly 
summarize here. 

Electronic polarization/ Optical polarization/ Induced polarization An applied field 
displaces the electron cloud center of an atom with respect to its nucleus.   This in- 
duces a dipole moment. Electronic polarization is found in both materials that possess 
molecules with large dipole moments (polar materials) and those that do not (nonpolar 
materials). 

Atomic polarization/ Ionic polarization/ Molecular polarization An applied elec- 
tric field may displace the atoms in the molecules, changing the distance between 
the atoms, and thus changing the dipole moment. Atomic polarization only occurs in 
polar materials. 



Orientational polarization/ Dipole polarization Without an applied field, a polar ma- 
terial possesses permanent dipole moments that are randomly oriented. When a field is 
applied, these dipoles align themselves with the field. Since orientational polarization 
is reliant upon the existence of permanent dipole moments, it only is found in polar 
materials. 

Interfacial polarization The impurities and defects in crystal can impede the flow of 
charge created by an applied field. The resulting charge accumulation can result in a 
dipole moment. This type of polarization is found only in crystals. 

The multiple names for each type of polarization can be confusing, especially when comparing 
the research of different contributors. We attempt to refer to each mechanism by the first 
name given above. We point out that in addition to this terminology both atomic and 
electronic polarization are sometimes referred to as distortional polarization [2]. 

In a given material, polarization can be the result of one or more of these four mechanisms. 
We are primarily interested in materials that contain a high water-content, such as living 
tissue or mud, so here we focus on polar liquids. The polarization in this class of liquids 
tends to depend mostly on the orientation of permanent electric dipoles in the molecules 
(orientational polarization) and the distortion of the molecules by an applied electric field 
(electronic and atomic polarization) [16]. With this in mind, we focus on these polarization 
mechanisms in the remainder of our discussions. 

In the presence of most applied electric fields, the polarization of a high water-content liquid 
is both distortional and orientational. At high (optical) frequencies however, the electric 
field oscillates so rapidly that it does not hold any orientation long enough for the dipoles 
to align with it. Thus, the orientational polarization is virtually insignificant [26]. This 
implies that at sufficiently high frequencies, the only contribution to the dielectric constant 
or optical index of refraction is from electrical distortion [16]. 

Since the polarization of a polar liquid has multiple mechanisms, we expect that a complete 
model must incorporate them all. Orientational polarization is suggestive of a mechanism 
with an exponential decay factor, such as the one in the model proposed by Debye [2]. 
However, a system rarely conforms exactly to the model described by the Debye dispersion 
equations due to the fact that the polarizational decay may not be represented accurately 
by a mechanism with one relaxation time [17]. On the other hand, distortional polarization 
causes charges to behave somewhat like linear harmonic oscillators; thus it is reasonable to 
model them as such (the Lorentz model is an example). Neither of these types of models alone 
will be sufficient to completely describe the polarization of a polar liquid. Nonetheless as a 
first step and to illustrate our ideas, we base our model on the Debye model for orientational 
polarization. Future modeling attempts will require systems of more complexity. 



2.2    The Debye model 

The Debye model [4] can be represented by the first order ordinary differential equation 

TP + P = (.0(ea-eoo)E, (5) 

or by 

P(t,z)=  I g(t-s,z)E(s,z)ds 
Jo 

with kernel 

g{t)= exp t\ £o(es - ec 

T 

In these equations, es is the static relative permitivitty and e^ is the value of permittivity 
for an extremely high (« infinite) frequency field. In this model, the value of the relative 
permittivity er of (3) in the dielectric is given by foo; that is, er = 1 in [0, zx] and eT = e^ in 
(zi, 1]. The variable r is the relaxation time of the dielectric. 

In [2], Anderson describes a potential double well formulation for an atomic model that leads 
to the Debye polarization model. In this model, the dielectric is made up of independent 
noninteracting particles; each particle has two equilibrium positions separated by a barrier 
of high potential. One considers a charged particle with two equilibrium positions A and 
B located a distance d from each other. Between them is a potential barrier W such that 
W > kßT where kB is the Boltzmann constant and T is the temperature. (See Figure 2.) 
If there is no electromagnetic field present, one assumes that the particle oscillates about 
either equilibrium, and on occassion, obtains enough energy to cross the potential barrier 
and jump into the other well. Over time, for constant temperature, the particle is near A as 
often as near B and the probability of finding the particle near a given well is -. 



d d 
Figure 2: Potential double well model with and without an applied field 

When an electric field E is applied in the direction from A to B, the potentials at each 
equilibrium are no longer equal, for instance VA > VB, and 

VA - VB = edE, 

where e is the charge of the particle. (See Figure 2.) A result from Boltzmann statistics 
implies that the probability that a particle has potential V is proportional to exp(-^), 
so that now it is more likely to find the particle near equilibrium B. As before, a particle 
can jump from one equilibrium to the other if it acquires enough energy. For a potential 
barrier W, the probability that a particle can cross this barrier in the direction from B to 
A is proportional to exp(-^), with proportionality constant |^, the assumed frequency 
of oscillation due to thermal agitation of the particle about the equilibrium. Likewise, the 
probability that the particle can cross the barrier in the direction from A to B is given by 

exp(-wr^iE). Using these probabilities and the fact that the total number N = NA + NB 2TT 

of particles is constant, one can derive [2] (see also page 387 of [15]) a linear first order 
differential equation to describe the difference NB(t) - NA(t) in number of particles in wells 
B and A at any time t 

WQ 

i(NB(t)-NA{t))=- 

exP (-jffif) {-(NB(t) - NA(t)) + ^NE) 

The polarization P(t) due to the applied electromagnetic field is proportional to NB(t) 

NA{t). By relating r with f exp (-^) and es - £oo with ^ exp (-^) ^A^, one thus 

arrives at the Debye model (5) from atomic considerations. 
IkßT1 



There is substantial reason to believe that the behavior described by the Debye model is 
pressure-dependent. One approach to understanding this pressure-dependence is to extend 
the above arguments and consider the polarization from a non-equilibrium thermodynamics 
perspective. A discussion of this nature is given in [20]. 

We however take a different approach to incorporating pressure-dependence into the Debye 
model. We present the model here and provide motivation in Section 2.3. We begin by 
assuming that the material-dependent parameters in the differential equation (5) depend on 
pressure, i.e., 

r(p)P + P = e0(es(p) - (oo{p))E = e0(7(p) - Q{p))E. 

We suppose as a first approximation that each of the pressure-dependent parameters can be 
represented as a mean value plus a perturbation that is proportional to the pressure 

T{P)     =     l-Q+T = T0 + KTp 

7(P)    =   7o + 7 = 7o + «7P 

C(p)   =   Co + C = Co + ÄcP- 

Then the equation 

r(p)P + P = eo(7(p)-C(p))£ 

can be written 

(T0 + KTP) P + P = e0 (70 - Co + (/s - KC)p) E. (6) 

We recall that the polarization term in (4) involves second-order time derivatives. To express 
(6) in compatible form, we take the time derivative of both sides to obtain 

P - -il+.^P) p |  f" (7o " Co + («7 - KC)p)^     e.0 (tz1-_Kc)p 
in) + KTp) {ra + KTp) "        (T0 + KTP) [i> 

with 

p = 1 p   ,    C" (70 ~ Co + (*7 ~ KC)P) jp fo. 
(T0 -I- KTp) (r„ + KTp) 



From here, we can use (8) in (7) and then replace P in (4) with the expression given by (7). 

Additionally, we should note that the relation er = e^ in (zx, 1] becomes er = e^p) = (O+KQP 

info,!]. 

2.3    Motivation for pressure-dependence of polarization 

The polarization described by both the original and pressure-dependent Debye models is due 
to the alignment of permanent dipole moments with the applied field. This tendency to align 
is inhibited by the presence of centrifugal or gyroscopic forces. These forces are caused by 
molecular rotations and collisions [26]. The pressure in a polarizable medium influences and 
is influenced by the short range particle interaction in the medium, including these molecular 
rotations and collisions. This interaction between particles may serve to inhibit or facilitate 
the alignment of dipole moments with the applied field, resulting in the modification of the 
orientational polarization [14]. Figure 3 depicts this schematically. 

Pressure 
perturbations 

I 
Molecular 

collisions & rotations 

Orientational 
polarization 

Direction of 
applied E field 

I 
Applied E field 

Figure 3: Pressure-dependence of orientational polarization 

This interaction makes sense intuitively; however, we want to better understand the interac- 
tion mechanism. Specifically, we want to consider each polarization parameter individually 
and address its possible pressure-dependence. 

9 



We begin with the static permittivity fs, which is the electric permittivity of a dielectric in 
the presence of a constant applied electric field. In 1850 and 1879 respectively, Clausius and 
Mossitti independently discovered that for any given material, the quantity " 

is proportional to the material density (page 155, [18]; page 140, [25]). Pressure variations 
in the material cause changes in its density. These changes are reflected in the static per- 
mittivity of the material due to the law of Clausius and Mossitti. So the static permittivity 
can be expected to depend on pressure. 

The pressure-dependence of es does not necessarily suggest the pressure-dependence of e^, 
the permittivity of a material under a very high frequency electric field. However in the 
interest of generality, we allow for the possibility that e^ is pressure-dependent. Pressure- 
independent behavior of c^ is just a special case of our model (see Section 2.1) with ACC = 0 
so that eoo(p) = £0. 

Lastly we examine the feasibility of the pressure-dependence of the relaxation parameter 
r. To do so we consider a dipolar liquid which consists of freely moving molecules. If 
an individual dipole changes its orientation, the nearby dipoles shift to compensate and 
produce a new equilibrium position. Their collective motion can be viewed as a viscous 
frictional damping force that acts on the original dipole. When an electric field is applied, 
its force causes the dipole to align itself with the field. The rate of alignment depends on the 
amount of friction. However since the dipole is subject to the effects of Brownian motion, 
this rate also depends on thermal fluctuations. Taking this into account Debye derived the 
following expression for the relaxation (page 73, [2]) 

2k ßl 

where f is the frictional constant. Dipoles arranged in smaller groups are less apt to resist 
reorientation [13]. This leads to diminished frictional effects. Variations in pressure likely 
alter the cohesion of dipole groupings and thus affect the friction. A specific example of 
this relationship is given in (page 63, [21]) for hard sphere fluids. In this case, the frictional 
viscosity constant is given by 

, = kBT 

m,D 

where m is the particle mass and D is the self-diffusion coefficient. The self-diffusion coeffi- 
cient is pressure-dependent; that is 

10 



2    V   m   )   \pkBT       J 

where R is the hard sphere diameter, p is the pressure, and p is the liquid density. Clearly 
in'this example the relaxation parameter r is pressure-dependent. 

3    Theoretical results 

In order to consider (4) from a theoretical perspective, it is convenient to write it in vari- 
ational form. We formulate the Gelfand triple V ■->• H <-> V*, where H = L2(0,1) and 
V = i^(0,l) = {</) e ^(0,1) : 0(1) = 0}. We let < •,• > denote the usual L2 inner 
product. Then we may write (4) as a variational form of Maxwell's equation in second order 
form 

< aE(t),(f) >v.y + < bE(t), </)> + < eP(t), (j> > 
(9) 

+cE(t,0)<f>(0) + o1(E{t),<i>) =< F{t)A>vy,    t e [0,7], 

for all (j) e V. The sesquilinear form ax is defined by 

<Ti((l>,ip) = c2 < <ß',ip'>, 

where c2 = ~ > 0 is constant and the parameter functions a, b, and e are determined 
by the geometry, conductivity, and instantaneous polarization of the dielectric. Since the 
absorbing boundary condition E - cE' — 0 at z = 0 is a natural condition, we incorporate it 
into the variational formulation of the equation. The superconductive boundary condition 
at z = 1 however is essential and is imposed in the definition of V. 

Motivated by the polarization model described in Section 2, we may rewrite (9) as the general 
variational form 

< aE(t), <f> >V.)V + < bE(t), (j)> + < hE(t), <f> > 

+ <fiG(tiS,-)E{sr)ds,<j>> 
(10) 

+cE(t,0)<j>(0) + a1(E(t),(l>)=<F(t),<l>>v.y,     tfieV,    te[0,T], 

E(0,z) = E0(z)    E(0,z) = E1(z), 

11 



where as in (9) the coefficients and kernel function are determined by system characteristic; 
For the pressure-dependent Debye polarization model given in Section 2, we have 

a(t,z)   =   l + (£oo-l)/(il,i) = l + (Co + «(p(«,2)-l)/(,lil) 

h(f    -?\       —        ( £. -1_   i   £o(T»-Co-t-(^-«<Mt.z))\    r 

hit  z)     =     — (f°(Kf-KW->z) _ (1+KW'('i2))co(7o-Co + («i-K(:)p(t12))\ 
£0   y    (To + KrP(/.,z)) ; (To + ZC-K^z))2 )   A^l.l) 

£(/;    s    z\       _ 1   (l + «rP(t,»))fo(-W-Co + (/t.y-K{)p(J,,z))    ^       ^ rt _rfg ^ 
V '' '   '      ' (° (r0 + KTp{t,z))2(T0+KTp(s,z)) C-XP   \.ls    T0 + KrPti,z))   H'lA) 

(11) 

C2    =    -i- 

F(t,z)    =    -ija(<) 

(Tl((f),1p)     =     C2 < <//,■(// >  • 

(Here In is the indicator or characteristic function for a set Q.) We note that the sesquilinear 
form ax : V x V -)• R is K-continuous and F-elliptic, so that there exist positive constants 
ci,c2 such that the following inequalities hold. 

ax((l>,4>) = c2 < <//,?// > < c2\<l>'\H\il>'\„ < c.y\<f>\v\il>\v 

a, (0, 0) = c2 < 0',«// >= cVl2, > c2|0|2,. 

In [9], the well-posedness of (10) is considered for general coefficient, kernel, and forcing 
functions under the following assumptions 

Al) The coefficient a along with its derivatives a and ä are in. Loo(0,r;Loo[0,1]), and for all 
z e [0,1], a(z) > o0, for some 1 > o0 > 0. 

A2) The coefficient b and its time derivative b are in Z,°°(0,T; L°°fO, ll) and bit z) > 0 for 
all(^z)e[0,T]x[0,l]. ^  }~ 

A3) The coefficient h is in L°°(0, T; L°°[Q, 1]). 

A4) The kernel function G is in L°°([0,T] x [0,7];L°°[0,1]). 

A5) The sequilinear form a! is given by (7,(0,-0) = c2 < 0'/0' > for 0, ?A e V with c > 0. 

12 



A6) The forcing function F is in Hl(0,T, V*). 

The result is the following theorem. (See [9] for a detailed proof.) 

Theorem 1: Under assumptions Al)-A6), the system (10) possesses a unique solution and 
{E,E) depends continuously on initial data (E0, Ex) and forcing function F from 
(E0,Ex,F) EVxHx Hl(0,T;V*) to {E, E) G L2{0,T;V) x L2(0,T;H). 

We may verify that assumptions Al)-A6) hold for (11) - see [9]. 

3.1     Estimation of parameters in the general variational 
form 

The previous well-posedness result provides a framework in which to formulate parameter 
estimation problems. As described in Section 1, the general Maxwell system treated by this 
result arises from a class electromagnetic interrogation problems. The crux of these prob- 
lems is estimation of certain parameter values, namely dielectric constants and conductivity 
coefficients, for the material under interrogation. The estimation problem typically involves 
finding the parameter values that provide the best fit between the model and data collected 
from the actual system, using, for example, a least squares criterion. These parameter 
estimates may then be used to characterize the material. 

In practice, the experimental data is compared with finite dimensional numerical approxi- 
mations to the model. In this section, we examine the relationship between the parameter 
estimation problems for the original system (10) and for a corresponding finite dimensional 
system. We suppose that the coefficients and sesquilinear form in both (10) and its finite 
dimensional approximation depend on a parameter q in a set Q. If the exact solution to the 
original system (10) were accessible, we would consider the problem of minimizing the least 
squares cost functional 

Nt 

J(q,w) = J2\OE(ti-q)-wi\
2 (12) 

i=i 

over q e Q where w = {wt}^ is a set of observations taken at times U, Q is a set of 
admissible parameters, and Ö is an observation operator. The form of O depends on the 
particular application and set of observations. For example, if wt is a measurement of the 
electric field taken at a spatial point z at time th then the operator O entails evaluations 
of the function E(t{, •; q) at a point in space. Since we cannot obtain a closed form solution 
to (10), we use the solution EN(t;q) to a finite dimensional approximating system. The 
solution EN(t;q) lies in VN, a finite dimesional subset of V, and satisfies 

13 



< a{q)EN(t),<l>>v.iV + < b{q)EN{t),<j> > + < h(q)EN{t), (j> > 

+ <fiG(t,8,-,q)EN(s,-)ds,<l>> 
(13) 

+cEN(t,Q)4>(0) + vi(<l)(EN(t),<l>) =< F{t\4»v.y 

E"(0,z) = VNE0(z)    EN(0,z)=VNEi(z) 

for all <f> e VN. In particular, we define the piecewise linear basis elements {0^}^1 with 
nodal values ${k/N) = Skj, k = 0,1,..., N, and let VN = span {</>», $\ ..., 0^_J c V. 
Then we define VN to be the quasi-L2(0,1) projection (see [23], [4], [12]) of V* onto VN 

defined by 

< VNv\vN >N=< v\ vN >v.tV     for v* € V* and for all vN G VN 

where 

riN(wNvN)(< 
Jo 

<wN,vN >N=   I    I"(w"v")(z) dz 

and / is the nodal value linear interpolation operator for VN. It is shown in [23] that the 
operator VN is well-defined and satisfies 

VPN<i>\n    <    K[\(I>\H for <f> € H 

(14) 
\VN4>\v    <   I<Mv for <ß e V. 

As expected, the corresponding cost functional for the finite dimensional system is 

Nt 

JN{<Lw) = Y.\OEN^(l)-wi\2- (15) 

Again the form of the operator Ö is chosen to correspond to the type of data collected. 

In [9], we established the well-posedness of (10) with solutions E in L2(0,T; V) and E e 
L2(0,T;/7), where V = 7/^(0,1) and H = L2(0,1), and we also verified that a unique 
solution to (13) exists. These results hold provided that, for each q e Q, Assumptions Al)- 
A6) are satisfied and the sesquilinear form aA is V-continuous and K-elliptic. Moreover in 
[24], we show that the solution E of (10) has the enhanced regularity E e H:i(0,T;V*) n 
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H2(0,T]H) n Hl(Q,T\V) under consistency conditions for the initial conditions and the 
following assumptions: 

A7) The second time derivative, b, of b is in L°°(0,T; L°°[0,1]). 

A8) The first and second time derivatives, h and h, of h are in L°°(0, T; L°°[0,1]). 

A9) The first and second derivatives with respect to the first temporal variable, 4-G and 
j2 '   at 
J^G, of the kernel function G are in L°°((0,T) x (0,T); L°°[0,1]). 

A10) The forcing function F is in H2(0,T,V*) and is of the form F{t,z) = g{t)8{z) with 
g{t) E H2(0,T) and g(0) = §(0) = 0. (This assumption replaces A6).) 

(Verification of these assumptions A7)-A9) for the pressure-dependent Debye polarization 
model are also given in [24].) 

We now make the following assumptions about the set of admissible parameters Q, the state 
space VN, and the projection operator VN. 

Bl) The finite dimensional set Q lies in a metric space Q with a metric d and is compact 
with respect to this metric. 

B2) The finite dimensional subspaces V^ are subsets of V. 

B3) For each 0 G V, \(ß - VN'<ß\v -> 0 as N -> oo. 

B4) For each <f> e H, \<j> - VN4>\H -> 0 as A^ -> oo. 

Verifications of B3) and B4) for our particular VN are given in [23]. We now make a further 
assumption on the sesquilinear form ox. We assume that ax — ox{q) is defined on Q and 
satisfies 

HI) 

ki(<7i)(<^,'0)-o-i(?2)(0,^)| <jd(qug2)\<f>\v\^\v 

for qi,q2 € Q where 7 depends only on Q. 

For the electromagnetic system in consideration in this paper, Assumption HI) is unnecessary 
since ai is independent of q. However for the purpose of establishing a more general result, 
we do not assume here that our sesquilinear form is parameter independent. 

Furthermore we make the following assumption about our coefficients. 

All) The coefficients depend continuously on q so that as d(q,qN) -4 0, we have 

15 



i) \a(q)-a(qN)\Loo->0 

ii) \b(q)~b(qN)\r^^Q 

Hi) \h{q)-h{qN)\LOO-*Q 

iv) \G(q)-G(qN)\Lx^O. 

The above continuity along with the compactness of Q implies that the images o(Q), b(Q), 
h(Q), and G{Q) are compact. Thus each coefficient can be bounded independently of q. We 
assume throughout that all bounds on our coefficients do not depend on q. 

By solving the parameter estimation problems related to (13), (15) we obtain a sequence of 
estimates {qN}. We wish to demonstrate that under certain conditions this sequence (or a 
subsequence) converges to the estimate corresponding to the problem related to (10), (12). 
In order to do this, we state the following claim, which can be found (along with a proof) 
as Theorem 5.1 in [11]. 

Theorem 2: To obtain convergence of at least a subsequence of {qN} to a solution q of 
minimizing (12) subject to (10), it suffices, under assumption Bl), to argue that for arbitrary 
sequences {qN} in Q with qN -> q in Q, we have 

OEN(t-qN)^OE(t;q). 

In [11], the operator O is general enough to include functions that map functions / such 
that / : T -> V to the space of observations W, where T is an appropriately chosen (see [11] 
arid [8]) subset of [0,T] that contains the times of observation and V is a space containing 
£"(£,•). In the numerical examples presented in this paper, the observations correspond to 
the values of the electric field at the point z = 0 at various times, i.e., {E(U,0)}; thus the 
operator O involves pointwisc evaluation of E at many points in time and one specific point 
in space. 

We suppose that VN and VN satisfy B2)-B4), the sesquilinear form ox satisfies HI), the 
coefficients satisfy assumptions Al)-All) and we let qN £ Q be arbitary such that qN'^ q 
in Q. Our primary goal is to show that as N ->■ oo 

EN(tAgN)^E(tAq) (i6) 

for each t G [0,T]. However, here we verify a more general result.  We show that for each 
ie[Q,T] 
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EN(t; qN)   ->   E{t; q) in the V norm 

(17) 
EN(t; qN)   ->   E(t; q) in the H norm 

as N ->■ oo, where £^, £* are the solutions to (13) and E, E are the solutions to (10). We 
note that we may evaluate these functions pointwise in t due to the enhanced regularity of 
solutions. Moveover, using the equivalence of norms, we see that (17) implies (16) and we 
have the result we need for our computations. 

We point out that for a sequence qN = q for all N, the desired result implies convergence of 
the finite dimensional approximation to the true solution. This is important when considering 
numerical approximations to the solution. 

We have established previously that the solution of (10) satisfies E(t) e V and E(t) e H for 
each t. Since 

\EN(t; qN) - E(t; q)\v < \EN'(«; qN) - VNE(t; q)\v + \VNE{t- q) - E(t; q)\v 

and B3) guarantees \VNE(t; q) - E(t; q)\v -^ 0 as iV ^ oo, we need only show that 

\EN(t;qN) - VNE{t-q)\v -> 0 as N -> oo 

for each t 6 [0,T]. In the same way, it suffices to show that 

\EN{t- qN) - VNE(t; q)\H-*0<isN-+oc 

for each t € [0, T] to obtain the second result. 

We let EN = EN(t; qN),E = E(t; q), and A^ = EN(t; qN) - VNE(t; q). 

Subtracting (10) from (13), we have for 4>eVN 

< a(qN)EN - a(q)E, </>> + < b{qN)EN - b(q)E, 4> > 

+ <h(qN)EN -h{q)E,<j>> 

+ < Jo(G(qN)EN - G(q)E) ds, </> > +c(EN(t, 0) - E(t, 0))^(0) 

+vi(qN)(EN,<l>)-vi(<l)(E,<t>) = 0. 
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We add and subtract Vh E and its derivatives and rearrange terms to obtain 

< a(qN)(EN - VNE), <j> > +a, (qN)(EN - VNE, <j>) 

+c(EN{t,0)-VNE{t,0))<l>(0) 

= < a{q)E,4>> - < a(qN)VNE,(f>> +al(q)(E,<f>) - ox(qN)(VNE,$) 

+c(E(t, 0) - VNE(t, O))0(O)+ < b(q)E - b(qN)EN, <f> > 

.      + < h(q)E - h(qN)EN, </;> + < £ G(q)E - G(qN)EN ds, $ > . 

We choose the test function </; = ÄAr £ VN so that 

< a(qN)(EN - TNE),kN > +a}(q")(EN - VNE,KN) 

+c(EN{t, 0) - VNE{t, 0))AN(t, 0) = 

< a(q)E,AN >-< a(qN)VNE,AN > +ol(q)(E, ÄN) - ax{qN)(VN E, AN) 

+c(E(t, 0) - VNE(t, 0))A"(Z, 0)+ < h(q)E - b(qN)EN, &N > 

+ < h(q)E - h(qN)EN, AA' > + < j;)(G(q)E - G(qN)EN) ds, ÄN > . 

We note that 

2 < a(qN)(EN - VNE), AN > +2a1(qN)(EN - VNE, AN) 

= | (< a(qN)ÄN,ÄN > +a,(qN)(AN,AN)) - < ä(q")ÄN,ÄN > . 

Then we have 
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\i (< a{qN)A\ AN > +a1(qN)(A», A")) +c(A^(t,0))2 = 

< a(q)E, AN >-< a{qN)VNE, AN > + < ä(qN)ÄN, AN > 

+al(q)(E,AN) - a1(qlf)(VNE,ÄN) 

+c(E(t,0) - VNE(t, 0))AN(t, 0)+ < b(q)E - b(qN)EN, AN > 

+ < h(q)E - h(qN)EN, AN> + < f*(G(q)E - G(qN)EN) ds, AN > . 

Integration with respect to t yields 

< a(qN)A»(t),AN(t) > +a1(q")(AN(t),A"(t)) 

+2£c(A^(e,0))2rfe = 

2 J0
f { < a(q)E, AN>-< a{qN)VNE, AN > + < ä(qN)ÄN, AN > 

+a, (q) (E, AN) - a, (qN) {VNE, AN) 

+c(E(Z, 0) - VNE{i, 0))A"(£, 0)+ < b(q)E - b(qN)EN, AN > 

+ < h{q)E - h(qN)EN, AN > + < J* G(q)E - G(qN)EN ds, A* > } <% 

+ < a(qN)AN(0),AN(0) > +a1(qN)(AN(0),AN(0)). 

We now use the definition of A^ to obtain 

A"(0) = £"(0) - VNE{0) = EN(0) - VNE0 = 0 

Ä"(0) = £"(0) - VNE(0) = EN{0) - VNEl = 0. 

We may then write 
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<a(qN)AN(t),ÄN(t) > +al(qN)(/\N(t),AN(t)) 

+2Üc(A»(Z,0))*dZ = 

2/0' { < a(q)E,AN >-< a{qN)VNE,KN > + < ä(q»)&N,AN > 

+a1(q)(E,ÄN)~al(qN)(VNE,ÄN) 

+c(E(S> 0) - VNE(Z, 0))AW(^, 0)+ < b(q)E - b{qN)EN, ÄN > 

+ < h(q)E - h(qN)EN, ÄN> + < J* G(q)E - G(qN)EN ds, ÄN > } d{. 

In order to bound the right side of (18), we derive the following estimates: 

Estimate 1: 

/o (2 < a(q)E,AN > -2 < a(qN)VNE,AN > + < ä(qN)ÄN,AN > ) d£ 

=   /o (2 < («(<7) - a^))^ AAr > +2 < o(9
JV)(£" - Pw£), AN > 

+ <ä{qN)ÄN,ÄN >) ri£ 

< /o l(«(9) - <*(?"))ä|5/ + \a(gN)(E - PA^)|?7 + J(5 + läfo'XJIÄ"!*, d£ 

< Hq) - a^Jli. £ |fjß # + 1%")^ £ |£ _ p"^ ^ 

+ |(5 + KOli»)/o|A^de. 

Estimate 2: 

2j>1(g)(25I A") -^"XP^Ä") df 

-°i(qN)CPNz:(t),*N(i))) 

(18) 
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=   2tial(q
N)(VNE-E,AN)+a1(qN)(E,AN)-a1(q)(E,AN)dZ 

+2[a1(q)(E(t),AN(t)) - a^)(E(t),AN(t)) 

+a1(qN)(E(t)-TNE(t),AN(t))) 

<   Iocl\VNE - E\l + ^(d(q,qN)y\E\l + 2\AN\l d^ 

+ cl\VNE(t) - E(t)\l + £{d(q, qN))2\E(t)\l + 2e\AN(t)\v 

where e > 0 is arbitrary. 

Estimate 3: 

2c(E(Z,0)-VNE(£,0))AN((;,0) 

< <?\E(Z,0)-VNE(Z,0)\2 + \AN(Z,0)\2 

< c2K1\E~VNE\v + \AN((,0)\2. 

(Here we use the fact that \<f>\v is equivalent to \(p'\2H + \4>(0)\2 so that \<f>\v > K{\4>'\2H + 
|^(O)|2)>/?|0(O)|2.) 

Estimate 4: 

2ft<b(q)E-b(qN)EN,ÄN>   d£ 

=    2f*{<b(q){E-VNE),ÄN> + <{b(q)-b{qN))VNE,ÄN> 

+ <b(qN)ÄN,AN>}d£ 

< Jo \KQ)(E - VNE)\l + \b(qN)AN\l + |(6(9) - b{qN))VNE\2H + 3|A^ d£ 

< |6(g)li- Jo 1^ - VNE
\H 

dt + (\b(qN)\l~ + 3) J* \A"\l d£ 

+ \b(q)-b(qN)\la,ti\V
NE\2Hdt. 

21 



Estimate 5: 

2f*<h(q)E-h(q")E\Ä»>  rf£ 

=    2 Jo'{< h{q){E - VNE),AN > + < (h(q) - h(qN))VNE,&N > 

+ <h(qN)AN,ÄN >} d( 

< /„' (\h(q)(E - VNE% + \h(qN)A"\l + 3\AN\l 

+\Mq)-h{qN))v»E\*I)dt 

< \Hl)\l- JO & - ^m, <Z + \h{qN)\\~ Ji \A»\*H de + 3^ |A"|2„ d{ 

+!M?)-M^)li~/0>
/v/^de. 

Estimate 6: 

2 Jo < fi(G(q)E-G(q")E») ds,Ä» >   d£ 

=    2Ü<foG(q)(E-VNE)ds,Ä"> + < [*(G(q)-G(q»))V»Eds,A>f> 
+ <f*G(qN)A" ds,AN>   d£ 

< /oil /o <?(?)(£ - VNE) ds\*H + | j*(Gfo) - G(q*))V»E ds\]} 

+ \f*G(qN)A» ds\), + 3|A"|2,}de 

=   /o7ol/oCG(g)(Ä-P^)d5pd2de 

+ Jo Jo' I /<f «?(*) - G(g"))7>"E äs? dz df 

+ /o Jo I J? Gfo") A" d,<f dz rf£ + 3 jj [ A"|2;/ d{ 

< |G(?)|ico £ £ | £ (£ - VNE) d,|2 d2 d^ + \G(q) - Gfa")^ £ £ | £ p"E ds|2 d2 rfe 

+W)!!-./;; /o11 j* A* d,p d2 de + 3 ;c; IA^ de 

T). 



<   \G{q)\l~TjQ /0 \E - VNE\lm dz de + \G(g) - Gi^^TJi £ W»E\\2{u) dz df 

<  |G(g)l!~T2 Jo |£ - ^£|2
ff de + \G(q) - G(^)|!.r2/o l^£|2„ de 

+\G(q
N)\i~T*ft\AN\l d{ + 3ti\Ä»\l dC       : 

Using these estimates, Assumption HI), the ^continuity and V-ellipticity of au and the 
fact that \(j)\2H < I0I2,, we may rewrite (18) as 

where 

+/o {i^(e, o)i2 + (f +16(^)11. + iiä^ii^iA^ 

(2 + \h(q»)\l„+l*\G(q»)\lco)\A»\ir} d£ + 

\\ <TO   =   fa{\a(qN)\UE-VNE\ 

+(c? + c2K,)\E ~ TNE\l + \b{q)\l^\E - VNE\l 

+ (I%)|£~ + ^IGMIic) |£ - p"^} de 

+||7>"i?(*)-2?(t)ft 
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ö?(t)    =    \a(q)-a(qN)\l„0f \E\% <% 
Jo 

+72dfa, gN) f \E\l ^ + |%) - 6(^)11» f \VNE\j, ri£ 

+ 0%) - HQN)\l~ +T2|G(g) - Gfa")!?,«) 

'o 

X 

Since e > 0 is arbitrary, we may choose it to be such that 1 > c2 - 2e > 0. Furthermore, the 
wave speed c satisfies 2c » 1. We then use Assumptions Al)-A4) to claim that there exist 
constants vuv2 > 1 and 1 > o0 > 0, independent off/, such that 

a0\AN(t)\l + (C2 - 2e)\AN(t)\l + /o(2c - 1)|A"(£, 0)|2 # 

< *?(*) + 6?(t) + io^lA^H, + v2\A"\l #. 

Finally recalling the bounds on uuu2,aü, and c2 - 2c, we may rewrite the inequality as 

a0\ÄN(t)\l + (c2-2e)\AN(t)\l 

In order to apply Gronwall's inequality to obtain uniform convergence of AN and Ä* in t as 
N -> oo, we must establish the uniform convergence of 6? and 5^. We have from B3) and 
B4) that \E(t) - VNE(l)\H, \E(t) - VNE(t)\v, and \E(t) - VNE{t)\v converge to zero as 
N -» oo for each /,. Since this convergence is dominated and {#(*)}te[0/n is compact in K, 
we have that 

8X   -> 0 uniformly in i as AT -> oo. 

Moreover, the boundedncss of £, E, and £ given by the enhanced regularity results and the 
assumption AS) imply that 
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8% -» 0 uniformly in i as TV -> oo and qN -» g in Q. 

Then we may apply Gronwall's inequality to conclude that 

sme[o,T]\&N{t)\v   ->   OasN->oo 

suPi6[o,r] 1^(01»   -*   Oas/V->oo 

which is sufficient to prove the desired result. 

3.2    Estimation of parameters in the system with pressure-dependent 
Debye polarization 

The general system (10) is formulated to accomodate systems arising from a variety of 
electromagnetic interrogation problems. We are concerned here with a particular system 
that incorporates a pressure-dependent model for Debye polarization. We demonstrate that 
this system satisfies Assumptions All), Bl)-B3) and HI) and thus that the results of the 
previous section apply. (We note that verifications of Assumptions AlVAlO) are given in [91 
and [24].) L J 

The system we wish to consider is given by (10) with the parameter-dependent coefficients, 
kernel and forcing functions, and sesquilinear form (11). 

For this system, the set of admissible parameters Q is a subset of R7, where seven is the 
number of parameters to be estimated (in addition to the six polarization parameters from 
Section 2, one is often interested in estimating the conductivity coefficient a). Here we 
consider q e Q C R7 where q = (cr, 70, Co,r0, Kj, KC,KT). We choose the admissible set Q to 
insure that our Debye coefficients are well-defined. First, because of the physical meaning of 
these parameters, the values of a, 70, Co and r0 must be positive. Then for a given pressure 
wave p with p,pe L°°(0, T; L°°(0,1)) and a fixed 5 > 0, we admit only values of K7, «C, and 
KT such that 70 + K1p(t, 2), Co + «cp(t, z), and T0 + KTp(t, z) are greater than 6 for all z G [0,1] 
and t £ [0,T]. In addition to these requirements, we assume that the admissible parameter 
set is closed and bounded in Rr. 

We recall that qN ->• q in the standard Euclidean metric is equivalent to the convergence 
of each component of qN. Moreover, any closed and bounded sets Q in R7 are compact 
and satisfy the conditions of Bl). The conditions B2)-B4) are satisfied by VN, which is 
in this case the set of finite dimensional linear piecewise basis elements, and the projection 
operator VN. To verify Hi), we note that cn(q)(<l>,I/J) = c2 < <f,',ij}' > is independent of q 
and |cr1(g1)((/>,-0) - (Ti(q2)(<l>,i>)\ = 0 for any q1:q2e Q. 
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We next verify All)i)-iv) for the coefficients in our model. We note that as qN -> q we have, 
for a given p,p £ L°°, 

\aN-a\-+0 (19) 

CoW + «?P-(Co + «cP) (20) 

To" - Co   + « - «?)P - (70 - Co + (K,7 - KcJp) -»0 (21; 

^ + «f? ~ (r0 - «Tp) -*0 
/,«> 

(22) 

:< -« f)/) -  ((/C7 - K.c)p) 
IJ00 

(23) 

and 

«?P («rpj 0. 
L°° 

(24) 

We use (20) directly to claim that \a(qN) - a(q)\Lco -» 0 whenever ow -> a- thus A.lln) 
holds. ; 

In demonstrating that All)ii) holds, we observe that 

\b(qN)-Kq)\L-< 
c0 

aN-a 

+ sup    sup 
(€[0,7'] 26(21,1] 

7o"-CoA' + «-<)p(/,. To - Co + (K7 - K{)p(t,z) 
T0 + KTp(t, z) 

Then we may apply equations (19), (21), and (22) and the quotient rule of limits to conclude 
that \b(qN) - b{q)\L™ -* 0 as qN -> q and All)ii) is satisfied. 

From the definition of h, we have 
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\h(q   ) — h(q)\Loo <  sup    sup 
TQ    + K?p{t, Z) T0 + Krp(t, z) 

+ 

te[a,T\ze[zi,i] 

(l + /cT^,z))(7o-Co + («7 - «<M*, z))      (1 + K?p(t, z))(7o" - (» + (K» - K")p{t, z)) 
(T0 + KTp(t,z))2 

(T0
N + K?P(t, Z)Y 

From equations (23), (22), (24), and (21) and the product and quotient rules of limits, we 
may conclude that All)iii) holds. 

To show that All)iv) holds, we argue that 

\G(qN)-G(q)\Lo,< 

sup sup 
(f,*)e[o,T]x[o,T]ze[2l,i] 

exp 
Js    Tf + K»! 

-^ \ (1 + <P(S, Z)){T» - C + « - <)p(s, z)) 
P(C, Z) J (T0

N + K?P(t, Z))
2
(T/ + K?P(S, z))2 

— exp (1 + KTp(s, z))(j0 ~ Co + («7 - «<)p(s, Z)) 
P(^Z)J (r0 + KTp(t, Z))

2
(T0 + KTp(s, Z))2 

We note that equation (22) coupled with the quotient rule for limits allows us to assert that 

exp -de —> exp 
T0

N + K^p(e, Z) J       "    -'*-  \JS    T0 + ACrp(e, Z] 
-de 

(25) 

as qN -> q.  Thus, we may use equations (24), (21), (22), and (25) with the quotient and 
product rules for limits to verify that 

|G(<r)-Gfa)|L»->0 

as qN -> q. 

We have thus verified that the theory established in Section 3.1 can be applied to the system 
corresponding to pressure-dependent Debye polarization described by the coefficients (11). 
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4    Numerical examples 

In the previous section, we demonstrated that a (sub)sequenee of minimizers {qN} of the cost 
functional (15) converges to a minimizer q of (12). In this section we present computational 
results for the problem of finding qN for a fixed N. (We attempt to choose N large so that 
qN is close to q.) 

This problem is equivalent to our main objective, estimating the polarization and conductiv- 
ity parameters of a dielectric by comparing numerical solutions of the model with experimen- 
tal data. We recall from Section 2 that our polarization model has six material-dependent 
parameters; in this section we fix a and consider only these six variables r0, Co, To, KT, KC, and 
K7 in the equation 

(T0 + KTp) P + P = f0 (7o - Co + («7 - /cc)p) E. 

We want to test the feasibilty of estimating them from experimental data. At this time, we do 
not yet have data from experiments (an experimental device to obtain such data is currently 
being constructed): instead we create simulated data from our computations. The simulated 
data consists of the boundary data from a numerical approximation to the solution of the 
system with added noise. (See [9] for sample numerical solutions to the forward problem.) 
We compute this approximate solution with fixed parameters values. These values are then 
thought of as our "unknown" true material parameters. The goal is to estimate these values. 
We appraise our ability to solve the problem by comparing the estimates with the true fixed 
values. If we cannot accurately approximate the parameter values in this context, we cannot 
expect to be able to estimate them in an experimental setting. 

We let q generically denote the set of parameters we wish to estimate in the examples 
presented below; these may include the mean values in the polarization model, r0, 70, and 
Co and/or the coefficients of pressure in the polarization model, KT, K7, and K0 We let q* 
denote the true values of the corrsponding "unknown" parameters. We leave the values of 
all other parameters fixed. 

There are two sets of electromagnetic reflections that, reach the boundary. The first, after 
the initial signal, are the reflections from the air/dielectric interface and the second are from 
the virtual interface produced by the acoustic pressure wave. (Figure 4 depicts each set of 
reflections separately.) In some scenarios, using data that contains only one set of reflections 
may be advantageous. For example, one may use the data from the initial signal and the 
reflections from the air/dielectric interface (i.e., the first section of data in Figure 4) to 
refine the initial parameter estimates and then use these refinements with the data from the 
acoustic interface reflections to obtain final estimates. In another approach, one may use 
just the data from the acoustic interface reflections to estimate the parameters. In any case, 
the cost functional for the examples given here is of the form 
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J(Q) = ^Eäata-mAq)f 
iei 

where / corresponds to an appropriately chosen data set. (Since here we consider exclusively 
the finite dimensional system for a fixed N, we drop the N for ease of notation.) 
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Figure 4: The two sets of reflections that reach the boundary 

We used a Neider Mead optimization routine [19] to find the parameter values that minimize 
the cost function. This optimization method is a gradient-free, simplex search method. The 
use of a gradient-based method to solve this problem is impractical due to computational 
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time. The particular routine used requires an initial simplex of estimates and a termination 
tolerance for the difference between subsequent function evaluations. We choose the initial 
estimates to have varying levels of error in relation to the true parameter values. For these 
computations, we set the termination tolerance at le-09. 

As already noted, we created simulated data to test our algorithms. The data set without 
noise is simply observations at the boundary taken from a forward simulation of the model 
using the parameter set q*. The data sets with error were created by adding an appropriate 
amount of normally distributed relative random noise to the original data set. The random 
noise was generated by the MATLAB command randn which creates normally distributed 
noise with mean 0 and variance 1 and was scaled and shifted appropriately. Because the 
noise is relative, the magnitude of noise is greater in the intervals of data that contain the 
initial interrogating impulse and the reflections. 

We next present sample results for specific parameter estimation problems. We first consider 
the problem of estimating q* = [%,Q,X = ^=r] = [78.2,5.5,0.10545728042059] from 
data with varying levels of noise. Here r* is so small" that it is advantageous to estimate A*, 
a scaled function of r0*; an estimated value of r0* may be computed from an estimation of 
A*. We use the data containing the initial signal and the reflections from the air/dielectric 
interface to refine the initial parameter estimates q0 and the data containing the reflections 
from the acoustic interface to obtain final estimates. We present the results in the following 
table. 
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Initial estimate g0 

go = 1.0g* 
g0 = 0.95g* 
go = 1.05g* 
go = 0.9g* 
go = l.ig* 

go = 0.95g* 
go = 1.05g* 
go = 0.9g* 
go = l.ig* 

g0 = 0.95g* 
g0 = 1.05g* 
go = 0.9g* 
go = l.ig* 

Final estimate for data without noise g 
[78.2, 5.5, 0.10545728042059] 
[78.190631, 5.499999, 0.105462]" 
[78.197841, 5.500000, 0.105458] 
[77.128609, 5.499937, 0.107T34ÖT 
[70.763992, 5.499504, 0.117540] 

Final estimate for data with 1% noise 
"[78.210472, 5.499997, 0.105444] 
[77.260485, 5.499940, 0.106852]" 
[78.198944, 5.499998, 0.105461] 
[78.482467, 5.500010, 0.105052]" 
Final estimate for data with 5% noise 
[74.876211, 5.499764, 0.110559] 
[77.975797, 5.499939, 0.105722]" 
[78.337467, 5.500010, 0.105186] 
[78.405972, 5.499987, 0.105T75] 

Table 1: Parameter estimation results for 
<7* = ho,G,y = TTfrk^} = [78.2,5.5,0.10545728042059] /ßoeoT. o 

These results illustrate that it is possible to recover accurate approximations of 7*, C0*, and A* 
in the presence of noise and with error up to 10% in the initial estimates. A few of the results 
are unexpected, for instance the ability to approximate the values better in the presence of 
5% noise with an initial guess with -10% error than with an initial guess with -5% error. We 
suspect these anomalies are due to the simplex search nature of the optimization routine. 

The results in the tables clearly indicate that we can recover g* without much error. However 
it is often illustrative to compare the solutions calculated with the estimates with the solu- 
tions calculated with g*. To do this, we plot the absolute value of the error for the solutions 
computed at the boundary, i.e., 

|£(^,0;g)-i?^,0;g*)| 

where g is the final estimate (given in the table). As an example, Figure 5 depicts this 
error for the estimation problem with 5% noise and an initial guess with -10% error. We see 
that overall the magnitude of error is small and that, as expected, the most error occurs in 
approximating the material and acoustic interface reflections. 
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Figure 5: \E(U,0;q) - E(ti,0;q*)\ vs tt - 
Absolute error for the parameter estimation problem 
with 5% noise and an initial guess with -10% error. 

We next consider the estimation of cf = [«;, «*, K*T] = [46.92,1.65,1.581139e - 09] from the 
previous data sets. Since these parameters are the coefficients of pressure, they are irrelevant 
and undeterminable until the electromagnetic/acoustic interaction occurs. Thus we include 
only the second section of data in the cost functional. We present the results below. 

32 



Initial estimate g0 Final estimate for data without noise g 

g0 = 0.99g* [46.450800, 1.633500, 3.16174e-09] 
q0 -1.01g* [46.92, 1.65, 1.58114e-09] 
go = 0.95g* [ 44.574000, 1.567500, 5.52700e-09] 
g0 = 1.05g* , [49.266000, 1.732500, 0] 
go = 0.9g* [42.228000, 1.485000, 0] 
g0 = 1.1g* [51.61200, 1.815000, 0] 

Final estimate for data with 1% noise 

g0 = 0.99g* [46.450800, 1.633500, 3.17078e-09] 
go = 1.01g* [47.389200, 1.666500, -7.2435e-10] 
g0 = 0.95g* [44.574000, 1.567500, 5.53493e-09] 
go = 1.05g* [49.266000, 1.732500, -1.064074e-08] 
go = 0.9g* [42.228000, 1.485000, 6.01095e-09] 
go = i.ig* [51.612000, 1.814500, -1.712928] 

Final estimate for data with 5% noise 

g0 = 0.99g* [46.450800, 1.633500, 3.22126e-09] 
go = 1.01g* [47.389200, 1.666500, -6.6658e-10] 
g0 = 0.95g* [44.574000, 1.567500, 5.56261e-09] 
go = 1.05g* [49.266000, 1.732500, -1.061871e-08] 
go = 0.9g* [42.228000, 1.485000, 6.02759e-09] 
go = 1.1g* [51.612000, 1.815000, -1.712024e-08] 

Table 2: Parameter estimation results for 
g  — [«7, K^, KT [46.92,1.65,1.581139e- 09] 

We are able to obtain reasonable estimates for the parameters, especially K* and K*-. We have 
difficulty estimating the value of «:*, most likely because the value is small. In general, the 
estimation error increases with the error in the initial guess. However, increasing the noise 
level in the data does not significantly effect the estimation accuracy. 

We note that we obtain better estimates for the mean values (7o,Co\ and ro) than for the 
pressure coefficients («;*,«;*., and K*T). This is understandable, as the mean values are more 
influential in the system dynamics. They are also more important in identifying and char- 
acterizing the material. 

In an electromagnetic interrogation parameter estimation problem, an estimate is suffi- 
cient if it can be used to classify the material. We consider the results for estimating 
g* = [K*, AC*-, K*] — [46.92,1.65,1.581139e — 09] using data with 5% relative normal noise and 
an initial guess with -10% error. After solving the parameter estimation problem, we obtain 
the result q = [42.228000,1.485000,6.02759e-09]. If parameter values within the hypothet- 
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ical range, 40 < «7 < 50, 1.4 < KC < 1.8, and le - 09 < KT < 9e - 09 are characteristic of 
the material under interrogation, we are successful in our attempt to solve the estimation 
problem. On the other hand, if the characteristic material parameters fall within the (hy- 
pothetical) range 45 < K, < 47, l.G < ACC < 1.7, and le - 09 < KT < 2e - 09, we are unable 
to characterize the material with our- estimates and our attempt is unsuccessful. Ranges of 
these parameter values for different materials have not been experimentally determined, so 
we have no concrete measure as yet to assess our ability to solve the problem. 

5    Concluding remarks 

We have presented theoretical and computational results for a new class of inverse problems 
arising in nondestructive interrogation of materials. Our focus is on reflections from acoustic 
pressure waves that are moving through dielectric material targets. A detailed atomic based 
model for acoustic-dependence of dielectric parameters in a Debye material was given and 
this was incorporated into a theoretical framework for both forward solutions and least 
squares parameter estimation. 

Computational findings suggest that primary parameters (relaxation, static permittivity, 
etc.) will be readily identifiable while aspects of the nonlinear dependence on pressure (first 
order coefficients) may be ascertained if appropriate data is available. 

Our efforts on this methodology are continuing. An experimental device (similar to that 
depicted in Figure 7.1 of [4]) is currently under construction. Data from this device will be 
used to test and validate the methods developed in this paper. 

6    Acknowledgements 

This research was supported in part by the Air Force Office of Scientific Research under 
grants AFOSR-F49620-01-1-0026, and AFOSR-F49620-98-1-0430 and in part through a De- 
partment of Education GAANN Fellowship to J. K. Raye under Grant P200A70707. 

References 

[1] R. A. Albanese, J. Perm, and R. Medina, "Short-rise-time microwave pulse propagation 
through dispersive biological media", J. Optical Society of America A 6 (1989), pp. 
1441-1446. 

[2] J. C. Anderson, Dielectrics, Reinhohl Publishing Company, New York, 1961. 

34 



[3] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 
1989. 

[4] H. T. Banks, M. W. Buksas, and T. Lin, Electromagnetic Material Interrogation Using 
Conductive Interfaces and Acoustic Wavefronts, SIAM Frontiers in Applied Mathemat- 
ics, Philadelphia, 2000. 

[5] H.T. Banks, M.L. Joyner, B. Wincheski, and W.P. Winfree , "Electromagnetic interroga- 
tion techniques for damage detection", CRSC-TR01-15, NCSU, June 2001; Proceedings 
Electromagnetic Nondestructive Evaluation 2001, Kobe, Japan, May 18-19, 2001, IOS 
Press, Amsterdam, (2002), to appear. 

[6] H.T. Banks, M.L. Joyner, B. Wincheski, and W.P. Winfree , "Real time computational 
algorithms for eddy current based damage detection", CRSC-TR01-16, NCSU, June 
2001; Inverse Problems, to appear. 

[7] H.T. Banks, M.L. Joyner, B. Wincheski, and W.P. Winfree, "Nondestructive evaluation 
techniques using a reduced order computational methodology", ICASE Technical Report 
2000-10, NASA Langley Research Center, March 2000; Inverse Problems, 16 (2000), pp. 
929-945. 

[8] H. T. Banks, C. J. Musante, and J. K Raye, "Approximate methods for inverse prob- 
lems governed by nonlinear parabolic systems", Numerical Functional Analysis and 
Optimization, 21 (2000), pp 791-816. 

[9] H. T. Banks and J. K. Raye, "Well-posedness for systems representing electromagnetic/ 
acoustic wavefront interaction", CRSC-TR01-34, December 2001; ESIAM: Control, Op- 
timization, and Calculus of Variations, to appear. 

[10] H. T. Banks and J. K. Raye, "Computational methods for nonsmooth acoustic systems", 
CRSC-TR01-02, NCSU, January 2001; Computational and Applied Mathematics, to 
appear. 

[11] H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures: Modeling, Esti- 
mation, and Control, J. Wiley k Sons, Chichester, 1996. 

[12] H. T. Banks and J. Zhou, "Regularity and approximation of systems arising in electro- 
magnetic interrogation of dielectric materials", Num. Func. Analysis and Optimization, 
20 (1999), pp. 609-627. 

[13] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cam- 
bridge, 1967. 

[14] S. R. deGroot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland Pub- 
lishing Company, Amsterdam, 1962. 

35 



[15] R. S. Elliott, Electromagnetics: History,  Theory, and Applications, IEEE Press   New 
York, 1993. 

[16] F. Franks, Water A Comprehensive Treatise, Plenum Press, New York, 1972. 

[17] E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric Behavior of Biological Models 
in Solution, Clarendon Press, Oxford, 1978. 

[18] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York  2nd edition 
1975. 

[19] C. T. Kelley, Iterative Methods for Optimization, SIAM Frontiers in Applied Mathe- 
matics, Philadelphia, 1999. 

[20] D. K. Kondepudi and I. Prigogine, Modern Thermodynamics From Heat Engines to 
Dissipative Structures, John Wiley & Sons, New York, 1998. 

[21] N. H. March and M. P. Tosi, Atomic Dynamics in Liquids, Dover, New York, 1976. 

[22] P. M. Morse and K. U. Ingard,  Theoretical Acoustics, The McGraw-Hill Companies, 
Inc., New York, 1968. 

[23] R. H. Nochetto and C. Verdi, "Approximations of degenerate parabolic problems using 
numerical integration, SIAM Journal on Numerical Analysis, 25 (1988), pp. 784-814. 

[24] J. K. Raye, An Electromagnetic Interrogation Technique Utilizing Pressure-Dependent 
Polarization, Ph.D. Thesis, North Carolina State University, in preparation. 

[25] J. A. Stratt.on, Electromagnetic Theory, The McGraw-Hill Companies Inc.   New York 
1941. 

[26] J. H. Van Vleck, The Theory of Electric, and Magnetic Susceptibilities, Oxford University 
Press, London, 1931. 

36 


